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2,4,6-Tris[4-(1-naphthyl)phenyl]-1,3,5-triazine exhibited a
high electron drift mobility of 8:0� 10�4 cm2 V�1 s�1.

Organic light-emitting diodes (OLEDs) have been of much
interest because of their application in new emissive displays.
Generally, OLEDs are fabricated by three thin layers of hole-
transporting, emissive, and electron-transporting materials sand-
wiched between an ITO-cathode and a metal-anode.1 Currently,
one of the most important challenges in OLED development is
the design of electron-transporting materials. Here, a number
of criteria have to be fulfilled to obtain high performance elec-
tron-transporting materials: i) electron affinity, ii) amorphous
film-forming property, iii) thermal and electrochemical stability,
iv) hole-blocking property, and v) high electron drift mobility.2

In particular, the last feature is significantly reflected in OLED
device performance, because the electron drift mobility is usual-
ly smaller by two to three orders of magnitude compared to the
hole drift mobility, leading to high operation voltage.3 Alq3 [alu-
minum tris(8-hydroxyquinolinate)], which has been used practi-
cally as an electron-transporting material in OLED, exhibits low
electron drift mobility of 1:4� 10�6 cm2 V�1 s�1.4 Only a few
electron-transporting materials such as silole5 and bathophenan-
throline6 were reported to have a high electron mobility of
�10�4 cm2 V�1 s�1. Here, we report the high electron drift mo-
bility of 8:0� 10�4 cm2 V�1 s�1 of tris[4-(1-naphthyl)phenyl]-
1,3,5-triazine (2c).
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Triazine derivatives 2a–2e were obtained by using Suzuki
coupling reactions of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine
(1) with the corresponding aromatic boronic acids in the pres-
ence of a Pd (0) catalyst (Scheme 1).7 The key synthetic inter-
mediate 1 was prepared by trimerization of 4-bromobenzonitrile

in a modified procedure in this work (see Supporting Informa-
tion).8

In CV measurements, 2a–2e show a one-electron reversible
reduction couple to exhibit their electrochemical stabilities. The
reduction potentials observed around –2.09 to –2.14V (vs Fc/
Fcþ) suggest that the electron affinity of the triazine core is af-
fected slightly by the terminal groups through the phenylene
spacer (Table 1).

In the DSC measurement, 1-naphthylphenyl derivative 2c
showed high glass transition temperature (Tg) at 133 �C. On
the other hand, the glass transition could not be found in the oth-
er triazine derivatives 2a, 2b and 2d, 2e (Table 1). Thus, a com-
bination of the star-burst core structure of 2,4,6-triaryl triazine
derivative and the sterically crowded 1-naphtyl group is useful
to prevent crystallization and to form an amorphous film.

From the facts described above, 2c is expected as a new can-
didate of electron-transporting material. The electron-transport-
ing capability of 2c is measured by the conventional TOF tech-
nique. A single device was fabricated, in which 2c (3.31-mm
width) was coated on an ITO cathode by vapor-deposition tech-
nique, then it was covered with Al. After irradiation with a N2

laser (337 nm), time-dependent photocurrent (I) was detectable
and the transient photocurrent signal showed pseudo non-disper-
sive electron transport (Figure 1), suggesting that electron trap-
ping due to energetic disorder is small in 2c.5,9

Electron drift mobility (�) was determined from Eq 1:

� ¼ L2=ðtTR � VÞ ð1Þ

where L is the sample thickness, tTR is the transit time deter-
mined from the inflection point on a logðIÞ-logðtÞ plot, and V

Table 1. Physical properties (half-wave reduction potential
(E1=2

red)a, and melting and glass transition temperatures (Tm
and Tg)

b of triazine derivatives 2a–2e

Compound E1=2
red (V vs Fc/Fcþ) Tm /�C Tg /

�C

2a �2:12 284 —
2b �2:09 240 —
2c �2:14 309 133
2d �2:10 315 —
2e �2:10 296 —

aDetermined by cyclic voltammetry in dichloromethane
(5� 10�4 M) containing 0.1M tetra-n-butylammonium hex-
afluorophosphate at scan rate of 100mV s�1. bDetermined by
differential scanning calorimetry measurement at heating and
cooling rate of 10 �Cmin�1.
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is the applied voltage. High electron drift mobility can be esti-
mated for 2c to be 8:0� 10�4 cm2 V�1 s�1 at 25 �C (3:8�
10�5 Vcm�1), depending on the temperature and the electric
field in the range from 3:2� 10�4 to 1:2� 10�3 cm2 V�1 s�1

(from �50 to 60 �C) and from 7:6� 10�4 to 1:1� 10�3

cm2 V�1 s�1 (from 3:0� 10�5 to 7:6� 10�5 Vcm�1).10 The
electron drift mobility of 2c is 4 times as large as that
(2:0� 10�4 cm2 V�1 s�1 at 27 �C/6:4� 10�5 Vcm�1) of a
silole-based material5 and competes with bathophenanthroline6

(5:2� 10�4 cm2 V�1 s�1 at 25 �C/5:5� 10�5 Vcm�1).
In conclusion, 2,4,6-tris[4-(1-naphthyl)phenyl]-1,3,5-tri-

azine is an attractive amorphous glassy electron-transporting
material, which has high electron drift mobility of 8:0� 10�4

cm2 V�1 s�1 at 25 �C (3:8� 10�5 Vcm�1).
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Figure 1. Transient photocurrent signal for a 2c single device
between ITO anode and Al cathode recorded at field
E ¼ 3:8� 10�5 Vcm�1 and at 25 �C. The film thickness was
3.31mm.
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